<table>
<thead>
<tr>
<th>Requirement</th>
<th>#Classes</th>
<th>Hours</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Religion Cornerstones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachings and Doctrine of The Book of Mormon</td>
<td>1</td>
<td>2.0</td>
<td>REL A 275</td>
</tr>
<tr>
<td>Jesus Christ and the Everlasting Gospel</td>
<td>1</td>
<td>2.0</td>
<td>REL A 250</td>
</tr>
<tr>
<td>Foundations of the Restoration</td>
<td>1</td>
<td>2.0</td>
<td>REL C 225</td>
</tr>
<tr>
<td>The Eternal Family</td>
<td>1</td>
<td>2.0</td>
<td>REL C 200</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16.0</td>
<td></td>
</tr>
</tbody>
</table>

University Core Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>#Classes</th>
<th>Hours</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Individual and Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Heritage</td>
<td>1-2</td>
<td>3-6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Global and Cultural Awareness</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year Writing</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Advanced Written and Oral Communications</td>
<td>1</td>
<td>3.0</td>
<td>CHEM 391*</td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td>1</td>
<td>4.0</td>
<td>MATH 112* or 113*</td>
</tr>
<tr>
<td>Languages of Learning (Math or Language)</td>
<td>1</td>
<td>4.0</td>
<td>MATH 112* or 113*</td>
</tr>
<tr>
<td>Arts, Letters, and Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civilization 1</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Civilization 2</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Arts</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Biological Science</td>
<td>1</td>
<td>3.0</td>
<td>CHEM 481M*</td>
</tr>
<tr>
<td>Physical Science</td>
<td>1</td>
<td>3.0</td>
<td>CHEM 111 * and PHSCS 121*, 123*, or 220*</td>
</tr>
<tr>
<td>Social Science</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Core Enrichment: Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religion Electives</td>
<td>3-4</td>
<td>6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Open Electives</td>
<td>Variable</td>
<td>Variable</td>
<td>personal choice</td>
</tr>
<tr>
<td>Graduation Requirements:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum residence hours required</td>
<td></td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>Minimum hours needed to graduate</td>
<td></td>
<td>120.0</td>
<td></td>
</tr>
</tbody>
</table>

BS in Chemistry (692821) MAP Sheet

Physical and Mathematical Sciences, Chemistry and Biochemistry
For students entering the degree program during the 2017-2018 curricular year.
BS in Chemistry (692821)
2017-2018 Program Requirements (75.0 Credit Hours)

No more than 3 hours of D credit is allowed in major courses.
The Chemistry and Biochemistry Department requires the final 10 hours of
time, and a grade of C- or better is required in Chemistry courses taken for this degree
required chemistry credit to be taken in residence at BYU for this degree.

The Chemistry and Biochemistry Department requires the final 10 hours of
residency requirement for graduation.

REQUIREMENT 1 Complete 21 courses
NOTE: WITH DEPARTMENT APPROVAL, CHEM 105 MAY SUBSTITUTE FOR
CHEM 111; AND CHEM 106 FOR CHEM 112.
CHEM 111 - Principles of Chemistry 1 4.0
CHEM 112 - Principles of Chemistry 2 3.0
CHEM 113 - Introductory General Chemistry Laboratory 2.0
CHEM 201 - Chemical Handling and Safe Laboratory Practices 0.5
CHEM 227 - Principles of Chemical Analysis 4.0
CHEM 351M - Organic Chemistry 1 - Majors 3.0
CHEM 352M - Organic Chemistry 2 - Majors 3.0
CHEM 354 - Organic Chemistry Laboratory—Majors 2.0
*CHEM 391 - Technical Writing Using Chemical Literature 3.0
CHEM 455 - Synthesis and Qualitative Organic Analysis 3.0
CHEM 462 - Physical Chemistry 1 3.0
CHEM 463 - Physical Chemistry 2 3.0
CHEM 464 - Physical Chemistry Laboratory 1.0
CHEM 465 - Physical Chemistry Laboratory 2 1.0
*CHEM 481M - Biochemistry—Majors 3.0
CHEM 495 - Senior Seminar 1.0
CHEM 514 - Inorganic Chemistry 3.0
CHEM 518 - Advanced Inorganic Laboratory 2.0
CHEM 521 - Instrumental Analysis Lecture 2.0
CHEM 523 - Instrumental Analysis Laboratory 2.0
CHEM 594R - General Seminar 0.5
You may take this course up to 1 time.

REQUIREMENT 2 Complete 7 courses
NOTE: MATH 313 AND MATH 314 MAY SUBSTITUTE FOR MATH 302.
MATH 112 - Calculus 1 4.0
MATH 113 - Calculus 2 4.0
MATH 302 - Mathematics for Engineering 1 4.0
PDBIO 120 - Science of Biology 3.0
PHSCS 121 - Introduction to Newtonian Mechanics 3.0
PHSCS 123 - Introduction to Waves, Optics, and Thermodynamics 3.0
PHSCS 220 - Introduction to Electricity and Magnetism 3.0

REQUIREMENT 3 Complete 3.0 hours from the following course(s)

AFTER CONSULTING WITH AN ADVISOR, COMPLETE 3 HOURS FROM THE
FOLLOWING. NOTE: WITH APPROVAL, CERTAIN OTHER 300-LEVEL AND
ABOVE COURSES IN THE ALLIED FIELDS OF PHYSICS, STATISTICS, ENGINEERING, AND BIOLOGY MAY BE TAKEN TO SATISFY THIS
REQUIREMENT. CHEM 500 DOES NOT COUNT TOWARD FULFILLING THIS
REQUIREMENT.
CHEM 482 - Mechanisms of Molecular Biology 3.0
CHEM 496R - Academic Internship: Chemistry and Biochemistry 6.0v
You may take up to 3 credit hours.
CHEM 497R - Undergraduate Special Problems 6.0v
You may take up to 3 credit hours.
CHEM 499R - Honors Thesis 6.0v
You may take up to 3 credit hours.
CHEM 552 - Advanced Organic Chemistry 3.0
CHEM 553 - Advanced Organic Chemistry 3.0
CHEM 563 - Reaction Kinetics 3.0
CHEM 565 - Introduction to Quantum Chemistry 3.0
CHEM 567 - Statistical Mechanics 3.0
CHEM 569 - Fundamentals of Spectroscopy 3.0
CHEM 584 - Advanced Biochemistry Methods 1 3.0
CHEM 586 - Advanced Biochemistry Methods 2 3.0
CHEM 596R - Special Topics in Chemistry 3.0v
You may take up to 3 credit hours.

Recommended Courses: Chem 195; Math 303; PHSCS 140, 145; Stat 201.

Note: Elective courses, beyond the requirements above, should be selected
in consultation with an advisor. The following should be given
consideration: advanced chemistry, foreign languages (especially French,
German, Japanese, and Russian), biological sciences, computer science,
engineering, mathematics, physics, statistics.

THE DISCIPLINE:
The Chemistry Bachelor of Science degree is the preferred
degree for chemistry majors (approved by the American
Chemical Society) especially those who desire an advanced degree (MS or PhD) in
chemistry. It also provides excellent preparation for those individuals in preprofessional programs (e.g., medicine,
dentistry, business administration, or law).
Chemists and biochemists study the fundamental processes
that govern the natural world, including atomic structure and
how atoms interact to form molecules and materials. They
study the mechanisms of chemical processes, including those
that underpin living systems such as the transfer of information
from DNA to RNA to proteins. They work to develop simplifying
models (theories) that permit the correlation and explanation of observations about the behavior of life to the structure of
rocks and minerals.
Chemistry and biochemistry provide an essential foundation for
the medical sciences, engineering (especially chemical
engineering), electronics, energy, environmental sciences,
materials science, pharmacy, and virtually all manufacturing
processes.
Chemistry and biochemistry are active branches of science that
are vital to human existence. Inasmuch as the field embraces
all aspects of the material world, it is subdivided into five areas
of interest. Examples of these diverse areas include the
regulation of protein synthesis, cellular signal transduction at
the molecular level and proteomics (biochemistry), design and
synthesis of medicinal compounds, catalysts and polymers
(organic chemistry), design and synthesis of new molecular
structures and materials (inorganic chemistry), spectroscopic
study of energy transfer and molecular structures (physical
chemistry), and analysis of medicinal compounds, biological
materials, and contaminants or trace elements found in the
environment (analytical chemistry).
Chemistry and biochemistry involve far more than test tubes
and beakers. They include sophisticated methodologies such as
recombinant DNA technology, working with a variety of
instruments such as mass spectrometers, calorimeters,
chromatographs, ultracentrifuges, lasers, X-ray diffraclometers,
electron microscopes and nuclear magnetic resonance
spectrometers, all of which are used by undergraduate
chemistry and biochemistry students at BYU. Computers also
play an important role in these disciplines, with applications
ranging from simulation of molecules and their interactions to
the collection and analysis of data. The chemistry and
biochemistry curricula are both rigorous and intellectually
rewarding.

CAREER OPPORTUNITIES:
Graduates in chemistry and biochemistry obtain positions in
education and many different industries, performing analysis,
synthesis, characterization, observation, and modeling. Those
who work hard, are creative, and have intellectual curiosity are
in particular demand. The discipline also provides an excellent
preprofessional course of study for those interested in medicine, dentistry, law, and business.

MAP DISCLAIMER

While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college advisement center/department for complete guidelines.

DEPARTMENT INFORMATION

Department of Chemistry and Biochemistry
Brigham Young University
C-100 BNSN
Provo, UT 84602
Telephone: (801) 422-6269

ADVISEMENT CENTER INFORMATION

Physical and Mathematical Sciences College Advisement Center
Brigham Young University
N-181 ESC
Provo, UT 84602
Telephone: (801) 422-2674